Difference between revisions of "Fresnel reflection"

From Glossary of Meteorology
imported>Perlwikibot
imported>Perlwikibot
 
Line 9: Line 9:
 
   </div>
 
   </div>
  
<div class="definition"><div class="short_definition">In [[radar]], a [[scattering]] mechanism proposed to explain certain kinds of [[clear-  air echoes]] observed by [[UHF]] and [[VHF]] radars.</div><br/> <div class="paragraph">Such echoes are observed by vertically pointing [[radars]] operating at wavelengths of about 1 m  and longer. They are in the form of thin, horizontal layers that exhibit strong aspect sensitivity,  in the sense that the [[reflectivity]] for a vertical [[beam]] is greater than that for off-vertical beams.  They are thought to be explained by partial reflections from thin layers containing sharp vertical  gradients of [[refractivity]]. The layers have vertical extents that are comparable to or less than a  [[wavelength]] and horizontal extents that are as large as the width of the first [[Fresnel zone]], namely,  (''z''&lambda;)<sup>&frac12;</sup>, where ''z'' is the [[altitude]] and &lambda; is the radar wavelength. Echoes explained by Fresnel reflection  have longer [[coherence]] times than those explained by [[Bragg scattering]] from beam-filling echoes  and are more in the nature of specular reflections. Sometimes a distinction is made between Fresnel  reflection and Fresnel [[scattering]]. The term scattering is used if there are several or many thin  reflective layers in the [[pulse volume]]; [[reflection]] is reserved for the situation of only one layer in  the pulse volume.</div><br/> </div><div class="reference">R&#x000f6;ttger, J., and M. F. Larsen 1990. UHF/VHF radar techniques for atmospheric research and wind profiler  applications. Radar in Meteorology. D. Atlas, Ed., American Meteorological Society, . 241&ndash;242. </div><br/>  
+
<div class="definition"><div class="short_definition">In [[radar]], a [[scattering]] mechanism proposed to explain certain kinds of [[clear-air echo|clear-  air echoes]] observed by [[UHF]] and [[VHF]] radars.</div><br/> <div class="paragraph">Such echoes are observed by vertically pointing [[radars]] operating at wavelengths of about 1 m  and longer. They are in the form of thin, horizontal layers that exhibit strong aspect sensitivity,  in the sense that the [[reflectivity]] for a vertical [[beam]] is greater than that for off-vertical beams.  They are thought to be explained by partial reflections from thin layers containing sharp vertical  gradients of [[refractivity]]. The layers have vertical extents that are comparable to or less than a  [[wavelength]] and horizontal extents that are as large as the width of the first [[Fresnel zone]], namely,  (''z''&lambda;)<sup>&frac12;</sup>, where ''z'' is the [[altitude]] and &lambda; is the radar wavelength. Echoes explained by Fresnel reflection  have longer [[coherence]] times than those explained by [[Bragg scattering]] from beam-filling echoes  and are more in the nature of specular reflections. Sometimes a distinction is made between Fresnel  reflection and Fresnel [[scattering]]. The term scattering is used if there are several or many thin  reflective layers in the [[pulse volume]]; [[reflection]] is reserved for the situation of only one layer in  the pulse volume.</div><br/> </div><div class="reference">R&#x000f6;ttger, J., and M. F. Larsen 1990. UHF/VHF radar techniques for atmospheric research and wind profiler  applications. Radar in Meteorology. D. Atlas, Ed., American Meteorological Society, . 241&ndash;242. </div><br/>  
 
</div>
 
</div>
  

Latest revision as of 17:01, 25 April 2012



Fresnel reflection

In radar, a scattering mechanism proposed to explain certain kinds of clear- air echoes observed by UHF and VHF radars.

Such echoes are observed by vertically pointing radars operating at wavelengths of about 1 m and longer. They are in the form of thin, horizontal layers that exhibit strong aspect sensitivity, in the sense that the reflectivity for a vertical beam is greater than that for off-vertical beams. They are thought to be explained by partial reflections from thin layers containing sharp vertical gradients of refractivity. The layers have vertical extents that are comparable to or less than a wavelength and horizontal extents that are as large as the width of the first Fresnel zone, namely, (zλ)½, where z is the altitude and λ is the radar wavelength. Echoes explained by Fresnel reflection have longer coherence times than those explained by Bragg scattering from beam-filling echoes and are more in the nature of specular reflections. Sometimes a distinction is made between Fresnel reflection and Fresnel scattering. The term scattering is used if there are several or many thin reflective layers in the pulse volume; reflection is reserved for the situation of only one layer in the pulse volume.

Röttger, J., and M. F. Larsen 1990. UHF/VHF radar techniques for atmospheric research and wind profiler applications. Radar in Meteorology. D. Atlas, Ed., American Meteorological Society, . 241–242.


Copyright 2022 American Meteorological Society (AMS). For permission to reuse any portion of this work, please contact permissions@ametsoc.org. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act (17 U.S. Code § 107) or that satisfies the conditions specified in Section 108 of the U.S.Copyright Act (17 USC § 108) does not require AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, require written permission or a license from AMS. Additional details are provided in the AMS Copyright Policy statement.